Name: \qquad
1.

Which statement is true about all the multiples of the number 4?

A. All multiples of 4 end in 4.
B. All multiples of 4 are odd.
C. All multiples of 4 are even.
D. All multiples of 4 follow an odd/even pattern.
2.

There were 8 cars parked on the first level of the parking garage. If each car has 4 tires, how many tires are on the first level of the parking garage?

3. Select all of the strategies that could be used to find the product of 8 and 6 ?
A. $(8 \times 3)+(8 \times 3)$
B. $(8 \times 5)+8$
C. $6+6+6+6+6+6$
D.

E. $(6 \times 2)+(2 \times 4)$
F. $8+8+8+8+8+8$
4. What is the product of 9 and 8 ?
Fill in the answer in the grid to the right.

5. Select all the equations that are true?

A. $8 \times 7=4 \times(4 \times 7)$
B. $(4 \times 2)+(4 \times 2)=8 \times 2$
C. $9 \times 6=6 \times 9$
D. $3 \times(2 \times 8)=(3 \times 2) \times 8$
E. $42=9 \times 7$
F. $4 \times 7=(4 \times 2)+(4 \times 5)$
6. The Panthers at the zoo eat 49 pounds of food in a week. If they eat the same amount each day, how much do they eat in one day? Select all the equations that could be used to solve the problem.
A. $49 \div 7=$ \qquad
B. $7 \div 49=$ \qquad
C. $49=7 \mathrm{x}$ \qquad
D. $49 \times 7=$ \qquad
E. $49 \div-=7$
F. \qquad $x 7=49$

What is the value of m in the equation below? Fill in your response in the grid to the right.

$$
7=m \div 8
$$

8.

Part of a multiplication table is shown. Which numbers would replace the symbols given?

A. $\Delta=49, \bigcirc=30, t=32, \ominus=42$
B. $\Delta=32, \bigcirc=42, \star=30, \otimes=49$
C. $\Delta=42,=32, t=30, ~ \otimes=49$
D. $\Delta=30, \bigcirc=30, t=49, \ominus=32$
9.

Which of the following expressions is not possible?
A. $4 \div 1$
B. 1×8
C. 5×0
D. $4 \div 0$

