## **Model Perimeter**

Perimeter is the distance around a shape.

Find the perimeter of the shape.

**Step 1** Choose a unit to begin counting and label it 1.



Step 2 Count each unit around the shape to find the perimeter.

16 units



So, the perimeter of the shape is 16 units.

Find the perimeter of the shape. Each unit is 1 centimeter.



2.





centimeters



centimeters

centimeters

## **Find Perimeter**

Kelsey wants to know the perimeter of the shape below. She can use an inch ruler to find the perimeter.

Step 1 Choose one side of the shape to measure. Place the zero mark of the ruler on the end of the side. Measure to the nearest inch. Write the length.



- **Step 2** Use the ruler to measure the other three sides. Write the lengths.
- $\textbf{Step 3} \ \, \textbf{Add the lengths of all the sides}.$

$$1+1+2+1=5$$

So, the perimeter of the shape is 5 inches.

Use an inch ruler to find the perimeter.

1.







\_\_\_\_\_ inches

\_\_\_\_\_ inches

# Algebra • Find Unknown Side Lengths

An unknown side length is a side that does not have its length labeled with a number. Instead the side is labeled with a symbol or letter, such as *a*.

The perimeter of the shape is 20 meters. Find the length of side a.



**Think:** There is only one unknown side length.

**Step 1** Add the *known* side lengths.

$$6 + 9 = 15$$

Step 2 Subtract the sum of the known side lengths from the perimeter.

$$20 - 15 = 5$$

Step 3 Add to check your work.

$$6 + 9 + 5 = 20 \checkmark$$

So, the unknown side length, a, is 5 meters.

The perimeter of the square is 12 feet. What is the length of each side of the square?



Think: A square has four sides of equal length.

$$12 \div 4 = 3$$

$$4 \times 3 = 12 \checkmark$$

So, the length of each side, x, is 3 feet.

### Find the unknown side lengths.

**1.** Perimeter = 18 centimeters



$$b =$$
 \_\_\_\_\_ centimeters



$$n =$$
 yards

## **Understand Area**

A unit square is a square with a side length of 1 unit. Area is the measure of the number of unit squares needed to cover a surface. A square unit is used to measure area.

What is the area of the shape?



**Step 1** Draw lines to show each unit square in the shape.



Step 2 Count the number of unit squares to find the area.



The area of the shape is 3 square units.

Count to find the area of the shape.

1. . . . . .



Area = \_\_\_\_ square units



Area = \_\_\_\_ square units

Area = \_\_\_\_ square units

### **Measure Area**

Find the area of the shape. Each unit square is 1 square inch.



Think: How many unit squares are needed to cover this flat surface?

- **Step 1** Use 1-inch square tiles. Cover the surface of the shape with the tiles. Make sure there are no gaps (space between the tiles). Do not overlap the tiles.
- Step 2 Count the tiles you used.5 tiles are needed to cover the shape.

So, the area of the shape is 5 square inches.

Count to find the area of the shape. Each square is 1 square inch.

1.



2.



Area = \_\_\_\_\_ square inches

Area = \_\_\_\_\_ square inches

## **Use Area Models**

Use multiplication to find the area of the shape. Each unit square is 1 square meter.



**Step 1** Count the number of rows.

There are 6 rows.



**Step 2** Count the number of unit squares in each row. There are **10** unit squares.



**Step 3** Multiply the number of rows by the number in each row to find the area.

number of rows  $\times$  number in each row = area

6

× 10

= 60

So, the area of the shape is **60** square meters.

Find the area of the shape. Each unit square is 1 square meter.

1.



2.



# **Problem Solving • Area of Rectangles**

Mrs. Wilson wants to plant a garden, so she drew plans for some sample gardens. She wants 2 ft to know how the areas of the gardens are related. How will the areas of Gardens A and B change? How will the areas of Gardens C and D change?







Use the graphic organizer to help you solve the problem.

#### **Read the Problem**

#### What do I need to find?

I need to know how the areas will change from A to B and from C to D.

### What information do I need to use?

I need to use the length and width of each garden to find its area.

#### How will I use the information?

I will record the areas in a table. Then I will look for a pattern to see how the areas will change.

#### Solve the Problem

|          | Length | Width | Area     |          | Length | Width | Area     |
|----------|--------|-------|----------|----------|--------|-------|----------|
| Garden A | 2 ft   | 6 ft  | 12 sq ft | Garden C | 2 ft   | 3 ft  | 6 sq ft  |
| Garden B | 4 ft   | 6 ft  | 24 sq ft | Garden D | 4 ft   | 3 ft  | 12 sq ft |

From the table, I see that the lengths will be doubled and the widths will be the same.

The areas in square feet will change from 12 to 24 and from 6 to 12.

So, the area will be doubled

#### Solve.

1. Mrs. Rios made a flower garden that is 8 feet long and 2 feet wide. She made a vegetable garden that is 4 feet long and 2 feet wide. How do the areas change?

# **Area of Combined Rectangles**

You can break apart a shape into rectangles to find the total area of the shape.



Step 1 Draw a line to break apart the shape into two rectangles.



**Step 2** Count the number of unit squares in each rectangle.



**Step 3** Add the number of unit squares in each rectangle to find the total area.

12 + 8 = 20 unit squares

So, the area of the shape is 20 square units.

Draw a line to break apart the shape into rectangles. Find the area of the shape.

1.



2.



з.



4.



# Same Perimeter, Different Areas

You can use perimeter and area to compare rectangles.

Compare the perimeters of Rectangle A and Rectangle B.

Α

Find the number of units around each rectangle.



Rectangle A: 3 + 2 + 3 + 2 = 10 units



В

Compare: 10 units = 10 units

So, Rectangle A has the same perimeter as Rectangle B.

Compare the areas of Rectangle A and Rectangle B.

Α



Rectangle A: 2 rows of  $3 = 2 \times 3$ , or 6 square units

В

Rectangle B: 1 row of  $4 = 1 \times 4$ , or 4 square units

Compare: 6 square units > 4 square units

So, Rectangle A has a greater area than Rectangle B.

Find the perimeter and the area. Tell which rectangle has a greater area.

1.



В



2.



# Same Area, Different Perimeters

Find the perimeter and area of Rectangles *A* and *B*. Tell which rectangle has a greater perimeter.

**Step 1** Find the area of each rectangle. You can multiply the number of unit squares in each row by the number of rows.

Rectangle A:  $2 \times 6 = 12$  square units

Rectangle  $B: 3 \times 4 = 12$  square units

**Step 2** Find the perimeter of each rectangle. You can add the sides.

Rectangle A: 6 + 2 + 6 + 2 = 16 units

Rectangle *B*: 4 + 3 + 4 + 3 = 14 units

Step 3 Compare the perimeters. 16 units > 14 units.

So, Rectangle **A** has a greater perimeter.





Find the perimeter and the area. Tell which rectangle has a greater perimeter.

1.



A: Area = \_\_\_\_\_

Perimeter = \_\_\_\_\_

*B:* Area = \_\_\_\_\_;

Perimeter = \_\_\_\_\_

Rectangle \_\_\_\_\_ has a greater perimeter.

2



*A:* Area = \_\_\_\_\_\_

Perimeter = \_\_\_\_\_

*B:* Area = \_\_\_\_\_\_

Perimeter = \_\_\_\_\_

Rectangle \_\_\_\_ has a greater perimeter.